geom_arcbar
plots arc bar diagrams that span 180 degrees. They also take an optional spacing argument sep
that is entered as a total proportion of pi. This is best demonstrated with an example:
bt <- data.frame(
parties = factor(c("CDU", "CSU", "AfD", "FDP", "SPD",
"Linke", "Gruene", "Fraktionslos"),
levels = c("CDU", "CSU", "AfD", "FDP", "SPD",
"Linke", "Gruene", "Fraktionslos")),
seats = c(200, 46, 92, 80, 153, 69, 67, 2),
colors = c("black", "blue", "lightblue", "yellow", "red",
"purple", "green", "grey"),
stringsAsFactors = FALSE)
ggplot(bt) +
geom_arcbar(aes(shares = seats, r0 = 5, r1 = 10, fill = parties),
sep = 0.1) +
scale_fill_manual(values = bt$colors) +
coord_fixed() +
theme_void()
geom_bartext
is a Stackoverflow-inspired, experimental feature (and currently only available via the developer version) for unstacking overlapping text-labels in barcharts. If overlapping, geom_bartext
will repel all groups of overlapping labels vertically or horizontally to make for a readable graph.
Consider e.g. this:
df <- data.frame(L = rep(LETTERS[1:2], each = 4),
l = rep(letters[1:4], 2),
val = c(96.5, 1, 2, 0.5, 48, 0.7, 0.3, 51))
gridExtra::grid.arrange(
ggplot(df, aes(x = L, y = val, fill = l)) +
geom_bar(stat = "identity") +
geom_text(aes(label = scales::percent(val / 100)), position = position_stack(vjust = 0.5)) +
ggtitle("GeomText"),
ggplot(df, aes(x = L, y = val, fill = l)) +
geom_bar(stat = "identity") +
geom_bartext(aes(label = scales::percent(val / 100)), position = position_stack(vjust = 0.5)) +
ggtitle("GeomBartext"),
ncol = 2
)
geom_bartext
takes all the arguments you would usually pass to geom_text
, plus the dir
argument which can be set to either v
(vertical, default) or h
(horizontal) repel.
Sometimes you might want additional spacing between the labels. In that case you can specify the spacing
argument, which is set to 0.003
default (npc
units).
geom_parliament
plots parliament diagrams, i.e. circles on an arc, where each circle represents a single Member of Parliament. If fill
or color
is specified, the points will be clustered by party (or rather, the seats
argument).
bt <- data.frame(
parties = factor(c("CDU", "CSU", "AfD", "FDP", "SPD",
"Linke", "Gruene", "Fraktionslos"),
levels = c("CDU", "CSU", "AfD", "FDP", "SPD",
"Linke", "Gruene", "Fraktionslos")),
seats = c(200, 46, 92, 80, 153, 69, 67, 2),
colors = c("black", "blue", "lightblue", "yellow",
"red","purple", "green", "grey"),
stringsAsFactors = FALSE)
ggplot(bt) +
geom_parliament(aes(seats = seats, fill = parties), color = "black") +
scale_fill_manual(values = bt$colors, labels = bt$parties) +
coord_fixed() +
theme_void()
Currently, the grouping is always calculated using the seats
argument.
geom_circle
plots circle-polygons with a specified radius, rather than size
in geom_point
. As such, this is also by default used by geom_parliament
.
df <- data.frame(x = sample(1:10, 3), y = sample(1:10, 3),
r = sample(3:4, 3, replace = TRUE))
ggplot(df) + geom_circle(aes(x = x, y = y, r = r, fill = gl(3, 1))) +
coord_fixed()
geom_tshighlight
(for timeseries-highlight) is a wrapper around geom_rect
that uses default values for ymin
and ymax
so that it spans the entire y-axis.
ggplot(economics, aes(x = date, y = unemploy)) +
geom_line() +
geom_tshighlight(aes(xmin = as.Date("01/01/1990", format = "%d/%m/%Y"),
xmax = as.Date("01/01/2000", format = "%d/%m/%Y")),
alpha = 0.01)
geom_boxjitter
plots a hybrid boxplot - half boxplot, half scatterplot - with optional errorbars. The jitter is customizable vertically and horizontally and also supports a seed
argument. Note that, if you specify e.g. fill
for the boxplot, you need to select a jitter.shape
that actually supports this. Shapes 21-25 support fill, and 21 is a circle.
df <- data.frame(score = rgamma(150, 4, 1),
gender = sample(c("M", "F"), 150, replace = TRUE),
genotype = factor(sample(1:3, 150, replace = TRUE)))
ggplot(df) +
geom_boxjitter(aes(x = genotype, y = score, fill = gender),
jitter.shape = 21, jitter.color = NA,
jitter.height = 0, jitter.width = 0.04,
outlier.color = NA, errorbar.draw = TRUE) +
scale_fill_manual(values = c("#ecb21e", "#812e91")) +
theme_minimal()
By default, outliers are a normal part of the jitterplot. We might want to highlight them, which can be done by setting outlier.intersect
to TRUE
. We also select a different outlier shape to clearly differentiate them from the scatter points.
ggplot(df) +
geom_boxjitter(aes(x = genotype, y = score, fill = gender),
jitter.shape = 21, jitter.color = NA,
jitter.height = 0, jitter.width = 0.04,
outlier.color = "black", errorbar.draw = TRUE,
outlier.intersect = TRUE, outlier.shape = 24,
outlier.size = 1.5) +
scale_fill_manual(values = c("#ecb21e", "#812e91")) +
theme_minimal()
It is also possible to hide the jitter altogether by setting boxplot.expand
to TRUE
.. In that case, geom_boxjitter
is equal to geom_boxplot
, but has additional, configurable errorbars.
ggplot(df) +
geom_boxjitter(aes(x = genotype, y = score, fill = gender),
errorbar.draw = TRUE, boxplot.expand = TRUE,
errorbar.length = 0.4) +
scale_fill_manual(values = c("#ecb21e", "#812e91")) +
theme_minimal()